3.588 \(\int \frac {(a+b \sin ^{-1}(c x))^2}{\sqrt {d+c d x} \sqrt {e-c e x}} \, dx\)

Optimal. Leaf size=55 \[ \frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {c d x+d} \sqrt {e-c e x}} \]

[Out]

1/3*(a+b*arcsin(c*x))^3*(-c^2*x^2+1)^(1/2)/b/c/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {4673, 4641} \[ \frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {c d x+d} \sqrt {e-c e x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])^2/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]),x]

[Out]

(Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^3)/(3*b*c*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4673

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> D
ist[((d + e*x)^q*(f + g*x)^q)/(1 - c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q]
 && GeQ[p - q, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d+c d x} \sqrt {e-c e x}} \, dx &=\frac {\sqrt {1-c^2 x^2} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{\sqrt {d+c d x} \sqrt {e-c e x}}\\ &=\frac {\sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{3 b c \sqrt {d+c d x} \sqrt {e-c e x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.68, size = 159, normalized size = 2.89 \[ \frac {-\frac {3 a^2 \tan ^{-1}\left (\frac {c x \sqrt {c d x+d} \sqrt {e-c e x}}{\sqrt {d} \sqrt {e} \left (c^2 x^2-1\right )}\right )}{\sqrt {d} \sqrt {e}}+\frac {3 a b \sqrt {1-c^2 x^2} \sin ^{-1}(c x)^2}{\sqrt {c d x+d} \sqrt {e-c e x}}+\frac {b^2 \sqrt {1-c^2 x^2} \sin ^{-1}(c x)^3}{\sqrt {c d x+d} \sqrt {e-c e x}}}{3 c} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])^2/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]),x]

[Out]

((3*a*b*Sqrt[1 - c^2*x^2]*ArcSin[c*x]^2)/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) + (b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x
]^3)/(Sqrt[d + c*d*x]*Sqrt[e - c*e*x]) - (3*a^2*ArcTan[(c*x*Sqrt[d + c*d*x]*Sqrt[e - c*e*x])/(Sqrt[d]*Sqrt[e]*
(-1 + c^2*x^2))])/(Sqrt[d]*Sqrt[e]))/(3*c)

________________________________________________________________________________________

fricas [F]  time = 0.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )} \sqrt {c d x + d} \sqrt {-c e x + e}}{c^{2} d e x^{2} - d e}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)*sqrt(c*d*x + d)*sqrt(-c*e*x + e)/(c^2*d*e*x^2 - d*e),
x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {c d x + d} \sqrt {-c e x + e}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)^2/(sqrt(c*d*x + d)*sqrt(-c*e*x + e)), x)

________________________________________________________________________________________

maple [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \arcsin \left (c x \right )\right )^{2}}{\sqrt {c d x +d}\, \sqrt {-c e x +e}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x)

[Out]

int((a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 53, normalized size = 0.96 \[ \frac {b^{2} \arcsin \left (c x\right )^{3}}{3 \, \sqrt {d e} c} + \frac {a b \arcsin \left (c x\right )^{2}}{\sqrt {d e} c} + \frac {a^{2} \arcsin \left (c x\right )}{\sqrt {d e} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/(c*d*x+d)^(1/2)/(-c*e*x+e)^(1/2),x, algorithm="maxima")

[Out]

1/3*b^2*arcsin(c*x)^3/(sqrt(d*e)*c) + a*b*arcsin(c*x)^2/(sqrt(d*e)*c) + a^2*arcsin(c*x)/(sqrt(d*e)*c)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d+c\,d\,x}\,\sqrt {e-c\,e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))^2/((d + c*d*x)^(1/2)*(e - c*e*x)^(1/2)),x)

[Out]

int((a + b*asin(c*x))^2/((d + c*d*x)^(1/2)*(e - c*e*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\sqrt {d \left (c x + 1\right )} \sqrt {- e \left (c x - 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))**2/(c*d*x+d)**(1/2)/(-c*e*x+e)**(1/2),x)

[Out]

Integral((a + b*asin(c*x))**2/(sqrt(d*(c*x + 1))*sqrt(-e*(c*x - 1))), x)

________________________________________________________________________________________